

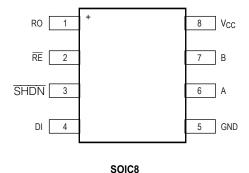
Half-Duplex RS-485-/RS-422-Compatible Transceiver with AutoDirection Control

■ Description

The TK13488 +5V, half-duplex, ±15kV ESD-protected RS-485/RS-422-compatible transceivers feature one driver and one receiver. It includes a hot-swap capability to eliminate false transitions on the bus during power-up or live insertion.

The TK13488 feature propri-etary AutoDirection control. This architecture makes the devices ideal for applications, such as isolated RS-485 ports, where the driver input is used in conjunction with the driver-enable signal to drive the differential bus.It is intended for half-duplex communications. It is available in an 8-pin SOIC package.

Features


- 1 transmitter and 1 receivers of the serial data of the standard RS-485
- Robust Protection Features for Telecom, Industrial, and Isolated Applications
- 5V Supply Voltage Range
- Operating temperature range: -40 ~ +85 °C
- Data rate: 16Mbps
- AutoDirection Saves Space and BOM Cost
- Allows Up to 128 Transceivers on the Bus, 1/4-unit load receiver
- Enhanced ESD Specifications:
 ±15kV Extended ESD Protection

Ordering Information

Part Number	Package	Packing	Temperature(TA)	Package Qty	ESD
TK13488FSR	SOIC-8	Reel	-40°C ~ 85°C	2500	±15KV

Note: Please contact us to customize other packaging devices.

■ Pin Description

Table 1. Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output.When receiver is enabled and V(A) - V(B) > +200mV, RO is high. If V(A) - V(B) < -200mV, RO is low.
2	RE	Receiver Output Enable. Drive $\overline{\text{RE}}$ low to enable RO. Drive $\overline{\text{RE}}$ high to let the AutoDirection circuit control the receiver. $\overline{\text{RE}}$ is a hot-swap input.
3	SHDN	Shutdown. Drive SHDN high to let the device operate in normal operation. Drive SHDN low to put the part in shutdown.
4	DI	Driver Input. Drive DI low to force noninverting output low and inverting output high. Drive DI high to force noninverting output high and inverting output low,DI is an input to the internal state machine.
5	GND	Ground
6	Α	Noninverting RS-485/RS-422 Receiver Input and Driver Output
7	В	Inverting RS-485/RS-422 Receiver Input and Driver Output
8	V _{CC}	Positive Supply.VCC = $+5V \pm 5\%$. Bypass V_{CC} with a $0.1\mu F$ ceramic capacitor to ground.

Functional Diagram

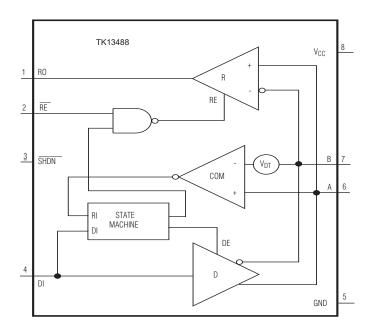


Table 2. Function Tables Transmitter Truth Table

	TRANSMITTING							
		INPUTS	OUTI	PUTS				
SHDN	DI	A-B > V _{DT}	ACTION	Α	В			
Н	L	X	Turn driver ON	L	Н			
Н	Н	False	If driver was OFF, keep it OFF	HIGH IMPEDANCE	HIGH IMPEDANCE			
Н	Н	False	If driver was ON, keep it ON	Н	L			
Н	Н	True	Turn driver OFF	HIGH IMPEDANCE	HIGH IMPEDANCE			
L	Х	X	X	SHUTDOWN				

Note: H - high level, L - low level, X -don't care

Table 3. Function Tables Receiver Truth Table

	RECEIVING							
	INPUTS							
SHDN	RE	A-B	DRIVER STATE	RECEIVER STATE	RO			
Н	L	≥+200mV	Χ	ON	Н			
Н	L	≤-200mV	Χ	ON	L			
Н	Н	Х	ON	OFF	HIGH IMPEDANCE			
Н	Н	≥+200mV	OFF	ON	Н			
Н	Н	≤-200mV	OFF	ON	L			
L	Х	X	X	X	SHUTDOWN			

Note: H - high level, L - low level, X -don't care

Table 4. Recommended Operating Condition

Symbol	Parameter	Lim	Unit	
Cymbe.	- aramotor	min	max	
V_{CC}	Supply voltage	4.75	5.25	V
V_{IL}	Input low voltage SHDN, RE, DI	0	0.8	V
V_{IH}	Input high voltage SHDN, RE, DI	2.0	V _{CC}	V
V_{OD}	Transmitter output voltage	-7.0	12.0	V
V_{IR}	Receiver input voltage	-7.0	12.0	V
V_{OR}	Receiver output voltage	0	V_{CC}	V
V_{TH}	Receiver differential threshold voltage	±50	±200	V
Т	Ambient temperature	-40	85	°C

Table 5. Maximum Ratings

		Li	Limit		
Symbol	Parameter	min	max	Unit	
V _{CC}	Supply voltage	-0.3	6.0	V	
V _{IL}	SHDN, RE, DI	-0.3	6.0	V	
V_{OD}	Transmitter output voltage	-8	13	V	
V_{IR}	Receiver input voltage	-8	13	V	
V _{OR}	Receiver output voltage	-0.3	V _{CC} +0.3	V	

^{*} Stresses beyond those listed under "maximum ratings" may cause permanent damage to the device.

These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 6. Electrical Parameters

(VCC = +5V \pm 5%,TA = TMIN to TMAX, Typical values are at V_{CC} = +5V and TA = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER		1					l .
		$R_{DIFF} = 100\Omega$, Figure 1		2.0		V _C C	
Differential Driver Output	V _{OD}	$R_{DIFF} = 54\Omega$, Fig	$R_{DIFF} = 54\Omega$, Figure 1				V
		No load				Vcc	
Driver Common-Mode Output Voltage	Voc	$R_L = 100\Omega$ or 54s	Ω, Figure 1		V _{CC} / 2	3	V
Driver Disable Threshold	V _{DT}	Figure 2 (Note 1)		+0.6		+1	V
Input-High Voltage	VIH	DI, SHDN, RE		2.0			V
Input-Low Voltage	V _{IL}	DI, SHDN, RE				0.8	V
Input Current	I _{IN}	DI, SHDN, RE				±1	μΑ
Driver Short-Circuit Output Current	losp	0V ≤ V _{OUT} ≤ +12	V	+50		+250	mA-
(Note 2)	002	$-7V \le V_{OUT} \le 0V$		-250		-50	
Driver Short-Circuit Foldback	1	(V _{CC} - 1V) ≤ V _{OU}	T ≤ +12V	20			mA
Output Current (Note 2)	IOSDF	-7V ≤ V _{OUT} ≤ 0V				-20	
RECEIVER	•			*			
Input Current	1	DI = V _{CC} , V _{CC}	$V_{IN} = +12V$			250	^
(A and B)	I _A , _B	= GND or +5V	$V_{IN} = -7V$	-200			μA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ +12V		-200		+200	mV
Receiver Input Hysteresis	ΔV_{TH}	$V_A + V_B = 0V$			25		mV
Output-High Voltage	V _{OH}	I _O = -1.6mA, V _A	- V _B > V _{TH}	V _C C - 1.5			V
Output-Low Voltage	VoL	$I_O = 1mA, V_A - V$	B < -VTH			0.4	V
Tri-State Output Current at Receiver	lozr	0V ≤ V _O ≤ V _{CC}				±1	μΑ
Receiver Input Resistance	RIN	$-7V \le V_{CM} \le +12$	V	48			kΩ
Receiver Output Short-Circuit Current	Iosr	0V ≤ V _{RO} ≤ V _{CC}		±7		±95	mA
POWER SUPPLY	ı	ı					ı
Supply Voltage	Vcc			4.75		5.25	V
Supply Current	Icc	SHDN = 1, RE = 0, no load				4.5	mA
Shutdown Supply Current	ISHDN	SHDN = 0				10	μΑ
ESD PROTECTION							
ESD Protection (A, B)		Air Gap Discharge IEC 61000-4-2 (TK13487E)			±15		kV
		Human Body Mo	del		±15		
ESD Protection (All Other Pins)		Human Body Model			±2		kV

Table 7.Switching Characteristics

(V_{CC} = +5V ±5%, T_A = T_{MIN} to T_{MAX}, . Typical values are at V_{CC} = +5V and T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
Division Division District	tDPLH	D 1100 0 F0=F Figure 0 = 10			50	ns
Driver Propagation Delay	tDPHL	$R_L = 110\Omega$, $C_L = 50pF$, Figures 2 and 3			50	
Driver Differential Output Rise or	t _{HL}	$R_{\rm I} = 110\Omega$, $C_{\rm I} = 50$ pF, Figures 2 and 3			15	200
Fall Time	t _{LH}	$M_{L} = 11022$, $G_{L} = 50 \mu$ F, Figures 2 and 3			15	ns
Maximum Data Rate			16			Mbps
Driver Disable Delay	tDDD	Figure 3			70	ns
Driver Enable from Shutdown to Output High	tDZH(SHDN)	Figure 4			2.2	μs
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	Figure 4			2.2	μs
Time to Shutdown	tshdn		50	340	700	ns
RECEIVER						
Receiver Propagation Delay	trplh	C 15pE Figures 5 and 6			80	ns
Theceiver i Topagation Delay	trphl	C _L = 15pF, Figures 5 and 6			80	110
Receiver Output Skew	trskew	C _L = 15pF, Figure 6			13	ns
Maximum Data Rate			16			Mbps
Receiver Enable to Output High	trzh	Figure 7			50	ns
Receiver Enable to Output Low	t _{RZL}	Figure 7			50	ns
Receiver Disable Time from High	t _{RHZ}	Figure 7			50	ns
Receiver Disable Time from Low	t _{RLZ}	Figure 7			50	ns
Receiver Enable from Shutdown to Output High	t _{RZH} (SHDN)	Figure 8			2200	ns
Receiver Enable from Shutdown to Output Low	^t RZL (SHDN)	Figure 8			2200	ns
Receiver Enable Delay	tred	Figure 3			70	ns
Time to Shutdown	tshdn		50	340	700	ns

Note 1: This is a differential voltage from A to B that the driving device must see on the bus to disable its driver.

Note 2: The short-circuit output current applied to peak current just prior to foldback current limiting. The short-circuit foldback out-put current applies during current limiting to allow a recovery from bus contention.

Test and Timing Diagrams

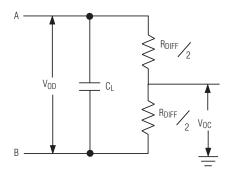


Figure 1. Driver DC Test Load

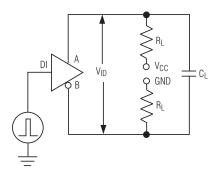


Figure 2. Driver Timing Test Circuit

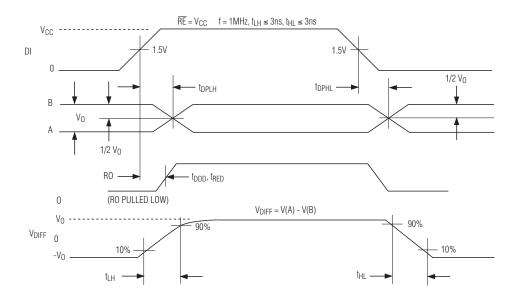


Figure 3. Driver Propagation Delays

Test and Timing Diagrams(continued)

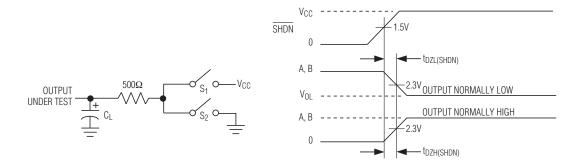


Figure 4. Driver Enable and Disable Times ($t_{\rm DZH,}$ $t_{\rm DHZ}$)

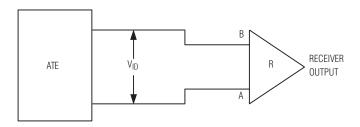


Figure 5. Driver Enable and Disable Times (t_{DZL} , t_{DLZ})

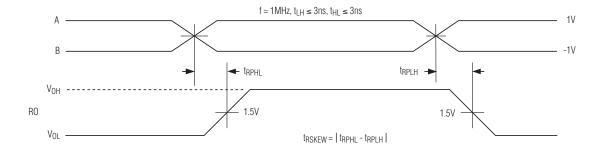


Figure 6. Receiver Propagation Delay Test Circuit

Test and Timing Diagrams(continued)

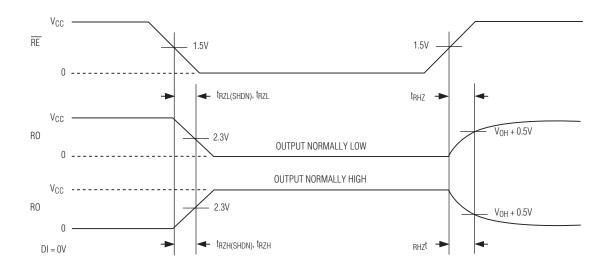


Figure 7. Receiver Propagation Delays

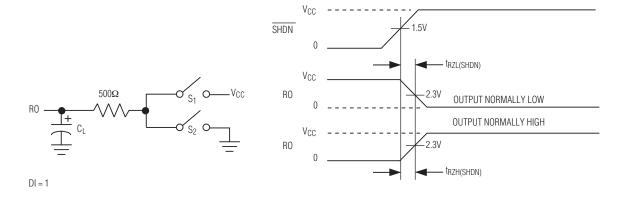
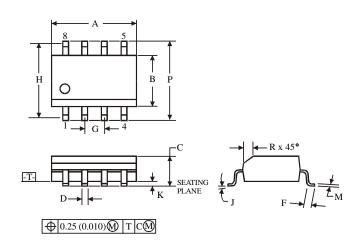



Figure 8. Receiver Enable and Disable Times

■ Package Dimensions

SOIC8

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN	MAX		
A	4.8	5		
В	3.8	4		
C	1.35	1.75		
D	0.33 0.51			
F	0.4 1.27			
G	1.27			
Н	5.	72		
J	0°	8°		
K	0.1	0.25		
M	0.19 0.25			
P	5.8 6.2			
R	0.25	0.5		