

LOW COST MICROPROCESSOR SUPERVISORY CIRCUITS

DESCRIPTION

The TK708 microprocessor supervisory circuit reduces the complexity and number of components required to monitor power-supply and monitor microprocessor activity. It significantly improves system reliability and accuracy compared to separate ICs or discrete components.

The TK708 provides power-supply monitoring circuitry that generates a reset output during power-up, power-down and brownout conditions. The reset output remains operational with VCC as low as 1V.

In addition, there is a 1.25V threshold detector for power-fail warning, low-battery detection, or monitoring an additional power supply.

FEATURES

- * Precision supply- Voltage Monitor
- * Valid RESET remains with VCC as low as 1V
- * 200ms Reset Pulse Width
- * Voltage Monitor for Power-Fail or Low-Battery Warning
- * With Manual reset input

SOIC - 8, 1.75 mm max height

ORDERING INFORMATION

Part Number	Package	Packing	Temperature(TA)	Package Qty	V_{RT}	
TK708CSA	SOIC-8	Reel	0°C ~ 70°C	2500	4. 4V	
TK708ESA	SOIC-8	Reel	-40°C ~ 85°C	2500	4. 4V	
TK708RCSA	SOIC-8	Reel	0°C ~ 70°C	2500	2.63V	
TK708RESA	SOIC-8	Reel	-40°C ~ 85°C	2500	2.63V	
TK708SCSA	SOIC-8	Reel	0°C ~ 70°C	2500	2.93V	
TK708SESA	SOIC-8	Reel	-40°C ~ 85°C	2500	2.93V	
TK708TCSA	SOIC-8	Reel	0°C ~ 70°C	2500	3.08V	
TK708TESA	SOIC-8	Reel	-40°C ~ 85°C	2500	3. 08V	

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	MR	Manual-Reset Input triggers a reset pulse when pulled below 0.8V. This active-low input has an internal $500\mu A$ (V_{CC} =+5V) pull-up current. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch.
2	Vcc	Power Supply Voltage that is monitored.
3	GND	0V Ground Reference for all signals.
4	PFI	Power-Fail Voltage Monitor Input. When PFI is less than 1.25V, $\overline{\text{PFO}}$ goes low. Connect PFI to GND or V_{CC} when not used.
5	PFO	Power-Fail Output goes low and sinks current when PFI is less than 1.25V; otherwise PFO stays high.
6	NC	NC
7	RESET	Active-Low Reset Output pulses low for 200ms when triggered, and stays low whenever $V_{\rm CC}$ is below the reset threshold. It remains low for 200ms after $V_{\rm CC}$ rises above the reset threshold or $\overline{\rm MR}$ goes from low to high.
8	RESET	Logic Output. RESET is an active high output suitable for systems that use active high reset logic. It is the inverse of RESET.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL RATINGS		UNIT
Terminal Voltage (with respect to GND)	Vcc	-0.3 ~ 6.0	V
All Other Inputs	V _{IN}	-0.3 ~ (V _{CC} +0.3V)	٧
Input Current, V _{CC} , GND	Icc	20	mA
Output Current, (all outputs)	l _{out}	20	mA
Junction Temperature	TJ	+150	ပ္
Operating Temperature Range	T _{OPR}	C:0 ~ +70 E:-40 ~ +85	Ç
Storage Temperature	T _{STG}	-65 ~ +150	ပိ

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (TJ, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage Range		V _{CC}		1.0		5.5	V
Supply Current		I _{SUPPLY}		1	50	150	μA
Reset Threshold				4.25	4.40	4.45	V
Reset Threshold Hysteresis					60		mV
Reset Pulse Width		t _{RS}		120	200	280	ms
RESET 、RESET Output Voltage			I _{SOURCE} =800µA	V _{CC} -1.5			V
			I _{sink} =3.2mA			0.4	V
			V _{CC} =1V, I _{sink} =50μA			0.3	V
MR Pull-Up Current			MR = 0V		500		μΑ
MR Pulse Width		t _{MR}		250			ns
MR Input Threshold Low	_ow		T _A = +25°C			0.8	V
	High			2			V
MR to Reset Out Delay		t _{MD}				350	ns
PFI Input Threshold				1.18	1.25	1.3	V
PFI Input Current			V _{CC} = 5V		0.2		nΑ
DEC Output Valtage			I _{SOURCE} =800µA	V _{CC} -1.5			V
PFO Output Voltage			I _{sink} =3.2mA			0.4	V

TYPICAL APPLICATION CIRCUIT

Applications Information

Ensuring a Valid RESET Output Down to VCC = 0V

When V_{CC} falls below 1V, the TK705–TK708 \overline{RESET} output no longer sinks current—it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pulldown resistor is added to the \overline{RESET} pin, as shown in Figure 5, any stray charge or leakage currents will be drained to ground, holding \overline{RESET} low. Resistor value (R1) is not critical. It should be about $100 \mathrm{k}\Omega$, large enough not to load \overline{RESET} and small enough to pull RESET to ground.

Monitoring Voltages Other Than the Unregulated DC Input

Monitor voltages other than the unregulated DC by connecting a voltage-divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and PFO. A capacitor between PFI and GND reduces the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. RESET can be asserted on

other voltages in addition to the +5V V_{CC} line. Connect \overline{PFO} to \overline{MR} to initiate a \overline{RESET} pulse when PFI drops below 1.25V. Figure 6 shows the TK708 con igured to assert \overline{RESET} when the +5V supply falls below the reset threshold, or when the +12V supply falls below approximately 11V.

Monitoring a Negative Voltage

The power-fail comparator can also monitor a negative supply rail (Figure 7). When the negative rail is good (a negative voltage of large magnitude), \overline{PFO} is low, and when the negative rail is degraded (a negative voltage of lesser magnitude), \overline{PFO} is high. By adding the resistors and transistor as shown, a high \overline{PFO} triggers a reset. As long as \overline{PFO} remains high, the TK705–TK708/TK813L keep reset asserted (\overline{RESET} = low, \overline{RESET} = high). Note that this circuit's accuracy depends on the PFI

threshold tolerance, the V_{CC} line, and the resistors.

PACKAGE OUTLINE SOIC - 8,1.75 mm max height

NOTES: Linear dimensions are in inches [millimeters]. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.