

LOW COST MICROPROCESSOR SUPERVISOR CIRCUITS

■ DESCRIPTION

The TK705 microprocessor supervisory circuit reduces the complexity and number of components required to monitor power-supply and monitor microprocessor activity. It significantly improves system reliability and accuracy compared to separate ICs or discrete components.

The TK705 provides power-supply monitoring circuitry that generates a reset output during power-up, power-down and brownout conditions. The reset output remains operational with VCC as low as 1V.

In addition, there is a 1.25V threshold detector for power-fail warning, low-battery detection, or monitoring an additional power supply.

■ FEATURES

Precision supply- Voltage Monitor

Valid RESET remains with VCC as low as 1V

200ms Reset Pulse Width

Voltage Monitor for Power-Fail or Low-Battery Warning

With Manual reset input

Precision-Supply Voltage Monitor - 4.65V

SOIC - 8, 1.75 mm max height

APPLICATIONS

Computers
Controllers
Intelligent Instruments
Critical µP Power Monitoring

ORDERING INFORMATION

Part Number	Package	Packing	Temperature	Package Qty	VRT	
TK705CSA	SOIC-8	Reel	0°C ~ 70°C (TA)	2500	4.65V	
TK705ESA	SOIC-8	Reel	-40°C ~ 85°C (TA)	2500	4.65V	

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	MR	Manual-Reset Input triggers a reset pulse when pulled below 0.8V. This active-low input has an internal $500\mu A$ (V_{CC} =+5V) pull-up current. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch.
2	V_{CC}	Power Supply Voltage that is monitored.
3	GND	0V Ground Reference for all signals.
4	PFI	Power-Fail Voltage Monitor Input. When PFI is less than 1.25V, PFO goes low. Connect PFI to GND or V _{CC} when not used.
5	PFO	Power-Fail Output goes low and sinks current when PFI is less than 1.25V otherwise PFO stays high.
6	WDI	Watchdog Input. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and WDO goes low (Figure 1). Floating WDI or connecting WDI to a high-impedance three-state buffer disables the watchdog feature. The internal watchdog timer clears whenever reset is asserted, WDI is three stated, or WDI sees a rising or falling edge.
7	RESET	Active-Low Reset Output pulses low for 200ms when triggered, and stays low whenever $V_{\rm CC}$ is below the reset threshold. It remains low for 200ms after $V_{\rm CC}$ rises above the reset threshold or $\overline{\rm MR}$ goes from low to high.
8	WDO	Watchdog Output pulls low when the internal watchdog timer inishes its 1.6sec count and does not go high again until the watchdog is cleared. WDO also goes low during low-line conditions.

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Terminal Voltage (with respect to GND)	Vcc	-0.3 6.0	٧
All Other Inputs	V_{IN}	-0.3 (V _{CC} +0.3V)	V
Input Current, V _{CC} , GND	Icc	20	mA
Output Current, (all outputs)	I _{OUT}	20	mA
unction Temperature	T	+150	C
Operating Temperature Range	T _{OPR}	C:0 +70 E:-40 +85	С
Storage Temperature	T _{STG}	-65 +150	C
SOIC(derate 5.88mW/ C above +70 C)		471	mW

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T , unless otherwise specified)

PARAMETE	R	SYMBOL	TEST CONDITIONS	MIN TYP MAX U		UNIT		
Operating Voltage Range	ting Voltage Range			1.0		5.5	V	
Supply Current		I _{SUPPLY}			150	350	μΑ	
Reset Threshold				4.5	4.65	4.75	V	
Reset Threshold Hystere	eset Threshold Hysteresis				40		mV	
Reset Pulse Width		t _{RS}		140	200	280	ms	
RESET Output Voltage			I _{SOURCE} =800µA	V _{CC} -1.5			V	
			I _{sink} =3.2mA			0.4	V	
			V _{CC} =1V, I _{sink} =50μA			0.3	V	
MR Pull-Up Current	MR Pull-Up Current		MR = 0V		500		μΑ	
MR Pulse Width		t _{MR}		250			ns	
IMP Input Threshold	w		T - 10500			0.8	V	
	gh		T _A = +25°C	2			V	
MR to Reset Out Delay	MR to Reset Out Delay					350	ns	
PFI Input Threshold				1.18	1.25	1.3	V	
PFI Input Current			V _{CC} = 5V		0.2		nA	
PFO Output Voltage			I _{SOURCE} =800µA	V _{CC} -1.5			V	
			I _{sink} =3.2mA			0.4	V	
		t _{WD}		1.00	1.60	2.25	s	
WDI Pulse Width		t _{WP}	$V_{IL} = 0.4V, V_{IH} = (V_{CC}) (0.8)$	50			ns	
\A/DI lawat Thomas and	Low					0.8	V	
WDI Input Threshold	High		V _{CC} = 5V	3.5				
WDI Input Current			V _{CC} = 5V		50	150	200	
			WDI = 0V	-150	-50		- μΑ	
WDO Output Voltage			I _{SOURCE} = 800μA	V _{CC} - 1.	5			
			I _{SINK} = 1.2mA			0.4	- V	

■ TYPICAL APPLICATION CIRCUIT

Applications Information

Ensuring a Valid RESET Output Down to VCC 0V

When V_{CC} falls below 1V, the TK705 \overline{RESET} output no longer sinks current—it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pulldown resistor is added to the \overline{RESET} pin, as shown in Figure 1, any stray charge or leakage currents will be drained to ground, holding \overline{RESET} low. Resistor value (R1) is not critical. It should be about $100 k\Omega$, large enough not to load \overline{RESET} and small enough to pull RESET to ground.

Figure 1. RESET Valid to Ground Circuit

Monitoring Voltages Other Than the Unregulated DC Input

Monitor voltages other than the unregulated DC by connecting a voltage-divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and PFO. A capacitor between PFI and GND reduces the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. RESET can be asserted on

other voltages in addition to the +5V V_{CC} line. Connect \overline{PFO} to \overline{MR} to initiate a \overline{RESET} pulse when PFI drops below 1.25V. Figure 6 shows the TK705 con.igured to assert \overline{RESET} when the +5V supply falls below the reset threshold, or when the +12V supply falls below approximately 11V.

Figure 2.Monitoring Both +5V and +12V

Monitoring a Negative Voltage

The power-fail comparator can also monitor a negative supply rail (Figure 3). When the negative rail is good (a negative voltage of large magnitude), \overline{PFO} is low, and when the negative rail is degraded (a negative voltage of lesser magnitude), \overline{PFO} is high. By adding the resistors and transistor as shown, a high \overline{PFO} triggers reset. As long as \overline{PFO} remains high, the **TK705** will keep reset asserted (\overline{RESET} = low, \overline{RESET} = high). Note that this circuit's accuracy depends on the PFI threshold tolerance, the V_{CC} line, and the resistors.

Figure 3. Monitoring a Negative Voltage

Interfacing to µPs with Bidirectional Reset Pins

 μ Ps with bidirectional reset pins can contend with the **TK705** RESET output. If, for example, the RESED to the driven high and the Microprocessor wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7kΩ resistor between the RESET output and the μ P reset I/O, as in Figure 4. Buffer the RESET output to other system components.

BUFFRED RESET TO OTHER SYSTEM COMPONENTS

Figure . Interfacing to Microprocessors with Bidirectional Reset I

PACKAGE OUTLINE SOIC - 8,1.75 mm max height

NOTES: Linear dimensions are in inches [millimeters]. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.