

Fail-Safe, Slew-Rate-Limited RS-485/RS-422 Transceivers

Description

The TK3081 is interface transceiver of serial data under RS-485 standard with low power consumption. The TK3081 features reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115Kbps. It intended for full-duplex communications.

The TK3081 is purposed for application in telecom systems under RS485/RS422 standards with low power dissipation, translators of the level, transceiving devices sensitive to electromagnetic radiation, industrial control systems.

Features

Allows up to 256 transceivers on the bus

Supply voltage range: 5.0V ± 5%

Data rate: 115Kbps

Full-duplex communications

Latch current, min – 300mA at normal climatic condition

 Enhanced ESD Specifications(TK3081E_ only): ±15kV IEC61000-4-2 Air Discharge ±8kV IEC61000-4-2 Contact Discharge

Ordering Information

Part Number	Package	Packing	Temperature(TA)	Package Qty	ESD
TK3081CSA	SOIC-8	Reel	0°C ~ 70°C	2500	
TK3081ESA	SOIC-8	Reel	-40°C ~ 85°C	2500	
TK3081ECSA	SOIC-8	Reel	0°C ~ 70°C	2500	±15KV
TK3081EESA	SOIC-8	Reel	-40°C ~ 85°C	2500	±15KV

Note: Please contact us to customize DIP packaging device.

Pin Description

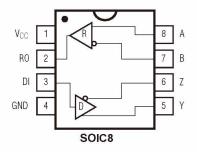


Table 1. Pin Description

Pin Num	Symbol	Pin Description
01	V _{CC}	Positive Supply $4.75V \le V_{CC} \le 5.25V$
02	RO	Receiver Output. When \overline{RE} is low and if A - B \geq -50mV, RO will be high; if A - B \leq -200mV, RO will be low.
03	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
04	GND	Ground
05	Y	Noninverting Driver Output
06	Z	Inverting Driver Output
07	В	Inverting Receiver Input
08	А	Noninverting Receiver Input

Typical Full-Duplex Operating Circuit

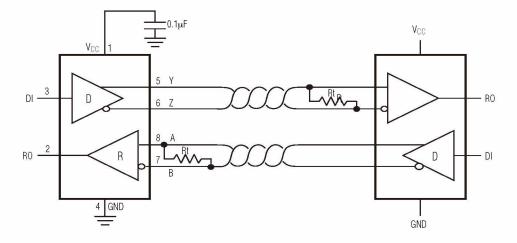


Table 2. Transmitter Truth Table

TRANSMITTING					
INPUT	OUTPUTS				
DI	Z	Υ			
Н	L	Н			
L	Н	L			

Note: H - high level, L - low level, X -don't care

Table 3. Receiver Truth Table

RECEIVING					
INPUTS	OUTPUT				
A - B	RO				
≥ -0.05V	Н				
≤-0.2V	L				
Open/shorted	Н				

Note : H - high level, L - low level , BH - inputs not used, X - don't care

Table 4. Maximum Ratings

Develope	Li	I I mit	
Parameter	min	max	Unit
Supply Voltage (Vcc)		7.0	V
Driver Input Voltage (DI)	0.3	V _{CC} + 0.3	V
Driver Output Voltage (A, B, Y, Z)	-13	13	V
Receiver Input Voltage, Full Duplex (A, B)	-25	25	V
Receiver Output Voltage (RO)	0.3	V _{CC} + 0.3	V
Continuous Power Dissipation (T _A = +70°C)		471	mW

Table 5. Electrical Parameters

 $(\mathsf{Vcc} = \mathsf{5V} \pm \mathsf{5\%})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER							
Di fferential Driver Output (no load)	V _{OD1}	Fig 1				5	٧
,	V _{OD2}	Fig 1, R = 50Ω (RS-422)		2.0			V
Differential Driver Output	VOD2	Fig 1, R = 27Ω (RS-4	85)	1.5			· V
Change in Magnitude of Differential Output Voltage	ΔV _{OD}	Fig 1, R = 50Ω or R =	- 27Ω			0.2	V
Driver Common-Mode Output Voltage	Voc	Fig 1, R = 50Ω or R =	- 27Ω			3	٧
Change In Magnitude of Common-Mode Voltage)	ΔV _{OC}	Fig 1, R = 50Ω or R =	- 27Ω			0.2	٧
Input High Voltage	V _{IH1}	DE, DI, RE, H/F, TXP	, RXP	2.0			٧
Input Low Voltage	V _{IL1}	DE, DI, RE, H/F, TXP	, RXP			0.8	٧
DI Input Hysteresis	V _H YS	TK3080-TK3085, and = V _{CC} or unconnected			100		mV
SRL Input Current	I _{IN1}	DE, DI, RE				±2	110
,	I _{IN2}	H/F, TXP, RXP, interr	nal pulldown	10		40	μA
Input High Voltage	V _{IH2}	SRL		V _{CC} - 0.8			V
Input Middle Voltage	V _{IM2}	SRL		0.4V _{CC}		0.6V _{CC}	V
Input Low Voltage	V _{IL2}	SRL				0.8	V
SRL Input Current	I _{IN3}	SRL = V _{CC} SRL = GND		-75		75	μΑ
Input Current (A and B)		DE = GND,	V _{IN} = 12V	70		125	
Full Duplex	I _{IN4}	Vcc = GND or 5.25	$V_{IN} = -7V$			-75	μΑ
Output Leakage (Y and Z)		DE = GND,	V _{IN} = 12V			125	
Full Duplex	lo	$V_{CC} = GND \text{ or } 5.25$	$V_{IN} = -7V$	-100			μΑ
		-7V ≤ Vout ≤ Vcc		-250			
Driver Short-Circuit Output	V _{OD1}	0V ≤ V _{OUT} ≤ 12V				250	mΑ
Current	Supplementary (II)	0V ≤ V _{OUT} ≤ V _{CC}	587 MG H				
RECEIVER							
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ +12V	-7V ≤ V _{CM} ≤ +12V		-125	-50	mV
Receiver Input Hysteresis	ΔV _{TH}				25		mV
Receiver Output High Voltage	Voh	$I_0 = -4mA$, $V_{ID} = -50$		Vcc -1.5			V
Receiver Output Low Voltage	V _{OL}	$I_{O} = 4mA, V_{ID} = -200$	OmV			0.4	V
Three-State Output Current at Receiver	lozr	$0.4V \le V_{\bigcirc} \le 2.4V$				±1	μΑ
	RIN			96			kΩ
Receiver Output Short-Circuit Current	Iosr	0V ≤ V _{RO} ≤ V _{CC}		±7		±95	mA
SUPPLY CURRENT				-			
		No load,	DE = Vcc		430	900	
		$\overline{RE} = DI = GND$ or V_{CC} , $SRL = V_{CC}$	DE = GND		375	600	μA
Supply Current	lcc	No load,	DE = Vcc		475	1000	
		RE = DI = GND	DE = GND		420	800	μΑ
Supply Current in Shutdown	Ishdn	or V _{CC} , SRL = GND DE = GND DE = GND, V _{RE} = V _{CC}			0.001	10	μΑ
Mode	water ATT (A. D.	2 200 /	W 200				
ESD Protection for Y, Z, A, B		Human Body Model (TK3086E_)			±15		kV

Table 6. SWITCHING CHARACTERISTICS

($V_{CC} = +5V \pm 5\%$, $T_A = T_{MIN}$ to T_{MAX} , Typical values are at $V_{CC} = +5V$ and $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	[‡] DPLH	Fig 3 and 5, R _{DIFF} = 54Ω,	500	2030	2600	ns
Driver input to Output	tDPHL	C _{L1} = C _{L2} = 100pF	500	2030	2600	115
Driver Output Skew tpplh - tppll	tdskew	Fig 3 and 5, R _{DIFF} = 54Ω , C _{L1} = C _{L2} = 100 pF		-3	±200	ns
Driver Rise or Fall Time	t _{DR} , t _{DF}	Fig 3 and 5, R _{DIFF} = 54Ω , C _{L1} = C _{L2} = 100 pF	667	1320	2500	ns
Maximum Data Rate	fMAX		115			kbps
Driver Enable to Output High	tdzh	Fig 4 and 6, C _L = 100pF, S2 closed			3500	ns
Driver Enable to Output Low	t _{DZL}	Fig 4 and 6, C _L = 100pF, S1 closed			3500	ns
Driver Disable Time from Low	t _{DLZ}	Fig 4 and 6, C _L = 15pF, S1 closed			100	ns
Driver Disable Time from High	t _{DHZ}	Fig 4 and 6, C _L = 15pF, S2 closed			100	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig 7; V _{ID} ≥ 2.0V; rise and fall time of V _{ID} ≤ 15ns		127	200	ns
t _{RPLH} - t _{RPHL} Differential Receiver Skew	t _{RSKD}	Fig 7; V _{ID} ≥ 2.0V; rise and fall time of V _{ID} ≤ 15ns		3	±30	ns
Receiver Enable to Output Low	t _{RZL}	Fig 2 and 8 , C _L = 100pF, S1 closed		20	50	ns
Receiver Enable to Output High	^t RZH	Fig 2 and 8, C _L = 100pF, S2 closed		20	50	ns
Receiver Disable Time from Low	t _{RLZ}	Fig 2 and 8, C _L = 100pF, S1 closed		20	50	ns
Receiver Disable Time from High	[‡] RHZ	C _L = 100pF, S2 closed		20	50	ns
Time to Shutdown	tshdn	(Note 1)	50	200	600	ns
Driver Enable from Shutdown to Output High	tDZH(SHDN)	Fig 4 and 6, C _L = 15pF, S2 closed			6000	ns
Driver Enable from Shutdown to Output Low	t _{DZL} (SHDN)	Fig 4 and 6, C _L = 15pF, S1 closed			6000	ns
Receiver Enable from Shutdown to Output High	^t RZH(SHDN)	Fig 2 and 8, C _L = 100pF, S2 closed			3500	ns
Receiver Enable from Shutdown to Output Low	[†] RZL(SHDN)	Fig 2 and 8, C _L = 100pF, S1 closed			3500	ns

Note 1: The device is put into shutdown by bringing \overline{RE} high and DE low. If the enable inputs are in this state for less than 50ns, The device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

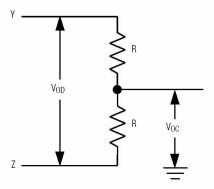


Fig 1. Driver DC Test Load

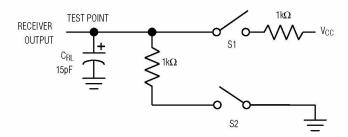


Fig 2. Receiver Enable/Disable Timing Test Load

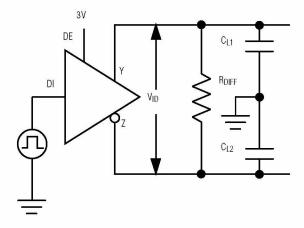


Fig 3. Driver Timing Test Circuit

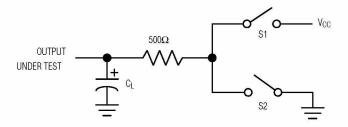


Fig 4 Driver Enable/Disable Timing Test Load

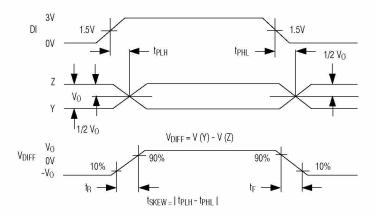


Fig 5. Driver Propagation Delays

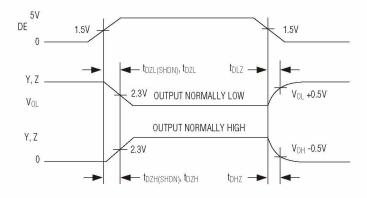


Fig 6. Driver Enable and Disable Times

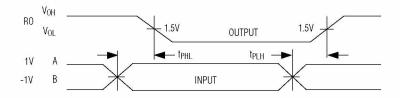


Fig 7. Receiver Propagation Delays

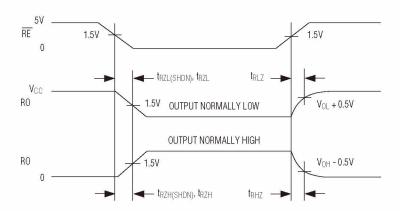


Fig 8. Receiver Enable and Disable Times

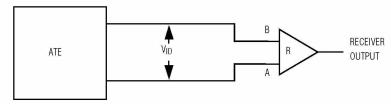


Fig 9. Receiver Propagation Delay Test Circuit

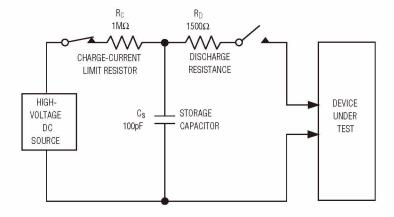
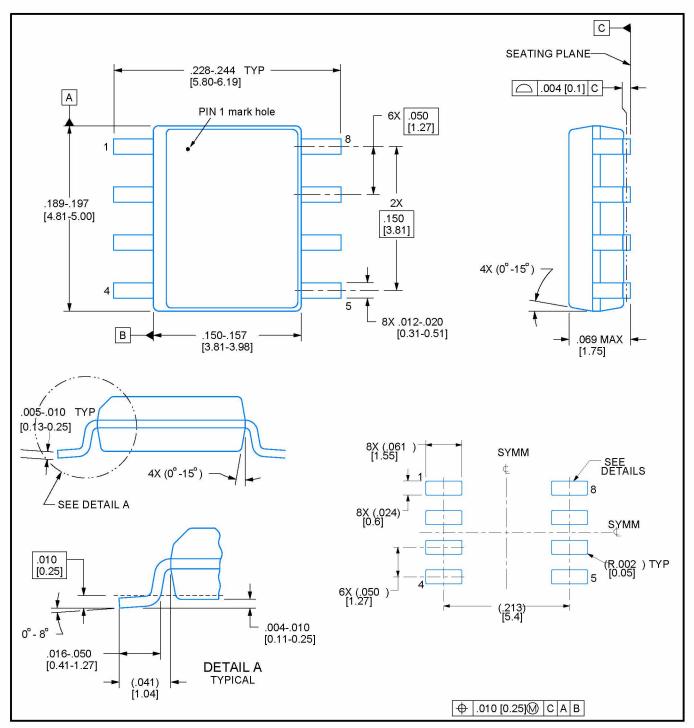



Fig 10. Human Body ESD Test Model

PACKAGE OUTLINE SOIC - 8,1.75 mm max height

NOTES: Linear dimensions are in inches [millimeters]. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.