

1 功能

- +5V工作电压
- 自动收发控制
- 热插拔功能
- 摆率限制确保数据传输无误TK13487E
- TK13488E支持高达16Mbps的传输速度
- 为RS-485 I/O引脚提供±15KV的HBM ESD保护
- 1/8单位负载,总线上允许挂接多达256个收发器
- 采用8引脚SOP封装

2 应用

- 隔离型RS-485接口
- 仪器仪表
- 工业控制
- 工业马达驱动
- 自动化控制系统

3 概述

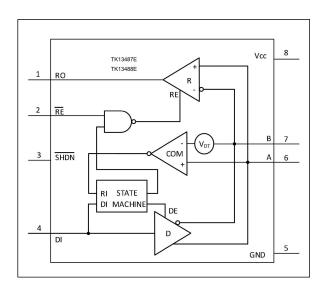
TK13487E/TK13488E是+5V、半双工、具有±15KV ESD保护的 RS-485/RS-422 收发器,其包含一路驱动器和一路接收器。

TK13487E/TK13488E具有热插拔功能,可以消除上电或带电插拔时候总线上的故障瞬态信号。

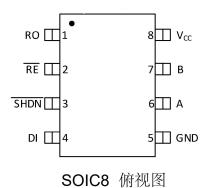
TK13487E/TK13488E采用自动收发控制方式,这种控制方式的收发器特别适合隔离RS-485端口等应用,其中,驱动器输入与驱动器使能信号结合使用来驱动差分总线。

TK13487E具有低摆率驱动器,能够降低EMI和由于不恰当的终端匹配电缆所引起的反射,并实现速率高达500Kbps的无差错数据传输;TK13488E没有限制驱动器摆率,数据传输速率可达16Mbps。

TK13487E/TK13488E接收器输入阻抗为 1/8 单位负载,总线上可以挂接多达 256 个收发器,两款器件均用于半双工通信。所有驱动器输出端口提供±15KV人体模式ESD保护。


TK13487E/TK13488E采用8引脚SOP封装,工作温度范围在-40°C 至+85°C。

订单信息


产品名称	封装	打印信息	操作温度范围	MSL 等级	包装,数量	环保标准
TK13487E	SOP8	TK13487E	-40 至 85℃	3	卷带, 2500	无铅
TK13488E	SOP8	TK13488E	-40 至 85°C	3	卷带, 2500	无铅

TK13487E/TK13488E 方框图

4 引脚配置和功能

引脚功能定义

引脚	名称	功能
1	RO	接收器输出。当接收器使能有效,若 V(A) - V(B) > -50mV, RO输出为高电平; 若 V(A) - V(B) < -200mV, RO输出为低电平。
2	RE	接收器输出使能。 \overline{RE} 接低电平时 RO 输出有效;当 \overline{RE} 接高电平时,自动收发控制电路控制接收器。 \overline{RE} 是热插拔输入端口(详细信息请参考热插拔功能部分)。
3	SHDN	关断使能。当 SHDN 为高电平时候,器件为正常工作模式;当 SHDN 为低电平时候,器件进入低功耗关断模式。
4	DI	驱动器输入。DI上的低电平强制同相输出为低电平,反相输出为高电平。同样,DI上的高电平将强制同相输出为高电平,反相输出为低。DI是内部状态机的输入,该状态机自动控制驱动器的使能状态。详情参考功能表和概述。DI是热插拔输入端口(详细信息请参考热插拔功能部分)。
5	GND	接地
6	Α	接收器同相输入和驱动器同相输出
7	В	接收器反相输入和驱动器反相输出
8	V_{CC}	正电源,V _{CC} = +5V ±5%。V _{CC} 到 GND 之间接 0.1μF 电容

5 规格

5.1 绝对最大额定值

请参阅注释 (1)

符号	参数	数值	单位
V _{CC}	电源电压	+6	V
$\overline{\mathrm{SHDN}}$, $\overline{\mathrm{RE}}$, DI	控制输入电压	-0.3 至 +6	V
А, В	驱动器输出电压	-8 至 +13	V
T _o	工作温度范围	-40 至 +85	°C
T _j	结温	+150	°C
T _{stg}	存储温度	-65 至 +150	°C

⁽¹⁾ 如果器件运行条件超过上述"绝对最大额定值",可能对器件造成永久性损坏。

5.2 电气特性

(V_{CC} = +5V±5%, T_A = T_{MIN} ~ T_{MAX}, 除非另有说明。典型值在 V_{CC} = +5V 和 T_A = +25℃ 条件下。)(注释 1)

参数	符号	测试条件		最小	典型	最大	单位
驱动器							
		R _{DIFF} = 100Ω , <u>图</u> 1		2.0		V _{cc}	
差分驱动器输出	V _{OD}	R_{DIFF} = 54Ω , <u>图1</u>		1.5			V
		无负载				Vcc	
驱动共模输出电压	V _{oc}	R _L = 100Ω 或 54Ω,	<u>图1</u>		V _{cc} / 2	3	V
驱动器使能阈值电压	V _{DT}	图2 (注释2)		+0.6		+1	V
输入高电压	V _{IH}	DI, SHDN, RE		2.0			V
输入低电压	V _{IL}	DI, SHDN, RE				0.8	V
输入电流	I _{IN}	DI, SHDN, RE				±1	μΑ
驱动器短路输出电流	I _{OSD}	0V ≤ V _{OUT} ≤ +12V		+50		+250	+250 -50 mA
· 2007 46 / 2014 11 11 11 11 11 11 11 11 11 11 11 11 1		-7V ≤ V _{OUT} ≤ 0V		-250		-50	
接收器							
松》中次(紅頂司明)		DI = V _{CC} ,	V _{IN} = +12V			250	
输入电流(A和B引脚)	I _{A, B}	V _{CC} = GND 或+5V	V _{IN} = -7V	-200			μΑ
接收器差分阈值电压	V _{TH}	-7V ≤ V _{CM} ≤ +12V		-200		-50	mV
接收器输入时滞	ΔV_{TH}	$V_A + V_B = 0V$			25		mV
输出高电压	V _{OH}	$I_{O} = -1.6 \text{mA}, V_{A} - V_{B}$	> V _{TH}	V _{CC} -1.5			V
输出低电压	V _{OL}	I _O = 1mA, V _A - V _B < -V _{TH}				0.4	V
接收器端三态输出电流	I _{OZR}	$0V \le V_0 \le V_{CC}$				±1	μΑ
接收器输入电阻	R _{IN}	-7V ≤ V _{CM} ≤ +12V		96			kΩ
接收器输出短路电流	I _{OSR}	$0V \le V_{RO} \le V_{CC}$		±7		±95	mA

电气特性(续)

供电电源						
供电电压	V _{CC}		4.75		5.25	V
供电电流	Icc	SHDN = 1, RE = 0, 无负载		0.6	2.0	mA
关断模式电流	I _{SHDN}	SHDN = 0		2	10	μΑ
ESD静电保护	_					
静电保护(A/B引脚)		空气放电IEC 61000-4-2		±15		kV
134 E 1914 (1947)		HBM人体模式		±15		
静电保护(其他引脚)		HBM人体模式		±4		kV

5.3 开关特性—TK13487E

(V_{CC} = +5V±5%, T_A = T_{MIN} ~ T_{MAX}, 除非另有说明。典型值在 V_{CC} = +5V 和 T_A = +25°C 条件下。)

	符号	测试条件	最小	典型	最大	单位	
驱动器		-			<i></i>		
驱动器传播延迟	t _{DPLH}		200		1000		
业	t _{DPHL}	R _L = 110Ω, C _L = 50pF, <u>图2</u> 和 <u>图3</u>	200		1000	ns	
驱动器差分输出上升或下	t _{HL}		200		900		
降时间	t _{LH}	R _L = 110Ω, C _L = 50pF, <u>图</u> 2和 <u>图</u> 3	200		900	ns	
数据最大传输速率			500			kbps	
驱动器关断延迟	t _{DDD}	图3			2500	ns	
从待机到输出高的驱动器 使能延迟	t _{DZH(SHDN)}	<u>图4</u>			5.5	μs	
从待机到输出低的驱动器 使能延迟	t _{DZL(SHDN)}	<u> 图4</u>			5.5	μs	
关断延迟	t _{SHDN}		50	340	700	ns	
接收器							
拉佐鬼仕採江汨	t _{RPLH}	C. 45.5 网5和网C			80	ns	
接收器传播延迟	t _{RPHL}	C _L = 15pF, <u>图5</u> 和 <u>图6</u>			80	ns	
接收器输出偏差	t _{RSKEW}	C _L = 15pF, <u>图6</u>			13	ns	
数据最大传输速率			500			kbps	
接收器使能到输出高的延 迟	t _{RZH}	<u>图7</u>			50	ns	
接收器使能到输出低的延迟	t _{RZL}	图7			50	ns	
接收器关闭到输出高的延迟	t _{RHZ}	图7			50	ns	
接收器关闭到输出低的延迟	t _{RLZ}	图7			50	ns	
从待机到输出高的接收器 使能延迟	t _{RZH} (SHDN)	图8			2200	ns	
从待机到输出低的接收器 使能延迟	t _{RZL} (SHDN)	<u>图8</u>			2200	ns	
接收器使能延迟时间	t _{RED}	<u>图3</u>			70	ns	
接收器关断时间	t _{SHDN}		50	340	700	ns	

5.4 开关特性—TK13488E

(V_{CC} = +5V ± 5%, T_A = T_{MIN} ~ T_{MAX}, 除非另有说明。典型值在 V_{CC} = +5V 和 T_A = +25°C 条件下。)

参数	符号	测试条件	最小	典型	最大	单位
驱动器						
驱动器传播延迟	t _{DPLH}				50	
业 列	t _{DPHL}	R _L = 110Ω, C _L = 50pF, <u>图</u> 2和 <u>图</u> 3			50	ns
驱动器差分输出上升或下	t _{HL}				15	nc
降时间	t _{LH}	R _L = 110Ω, C _L = 50pF, <u>图</u> 2和 <u>图</u> 3			15	ns
数据最大传输速率			16			Mbps
驱动器关断延迟	t _{DDD}	图3			70	ns
从待机到输出高的驱动器 使能延迟	t _{DZH(SHDN)}	<u>图4</u>			2.2	μs
从待机到输出低的驱动器 使能延迟	t _{DZL(SHDN)}	<u>图4</u>			2.2	μs
关断延迟	t _{SHDN}		50	340	700	ns
接收器				1		
14.16 nn 14 120 27) n	t _{RPLH}				80	ns
接收器传播延迟	t _{RPHL}	CL = 15pF, <u>图5</u> 和 <u>图6</u>			80	
接收器输出偏差	t _{RSKEW}	C _L = 15pF, <u>图6</u>			13	ns
数据最大传输速率			16			Mbps
接收器使能到输出高的延迟	t _{RZH}	图7			50	ns
接收器使能到输出低的延迟	t _{RZL}	图7			50	ns
接收器关闭到输出高的延迟	t _{RHZ}	图7			50	ns
接收器关闭到输出低的延迟	t _{RLZ}	图7			50	ns
从待机到输出高的接收器 使能延迟	t _{RZH}	图8			2200	ns
从待机到输出低的接收器 使能延迟	t _{RZL}	图8			2200	ns
接收器使能延迟时间	t _{RED}	图3			70	ns
接收器关断时间	t _{SHDN}		50	340	700	ns

注释 1: 进入设备的所有电流均为正。设备输出的所有电流均为负。除非另有说明,否则所有电压参考设备接地。

注释 2: 这是从 A 到 B 的差分电压,驱动设备必须在总线上观测该电压才能禁用其驱动器。

6 功能表

驱动器							
		输入	输	出			
SHDN	SHDN DI A-B > V _{DT} 状态				В		
1	0	Х	驱动器打开	0	1		
1	1	否	如果驱动器关闭,继续保持关闭	高阻态	高阻态		
1	1	否	如果驱动器打开,继续保持打开	1	0		
1	1	是	驱动器关闭	高阻态	高阻态		
0	Х	Х	х	关	 断		

接收器							
	输入						
SHDN	SHDN RE A-B 驱动器状态 接收器状态						
1	0	≥-50mV	X	ON	1		
1	0	≤-200mV	X	ON	0		
1	1	X	ON	OFF	高阻态		
1	1	≥-50mV	OFF	ON	1		
1	1	≤-200mV	OFF	ON	0		
0	Х	Х	X	Х	关断		

X=无关;关断模式,驱动器和接收器的输出都处于高阻态。

7 测试电路及波形

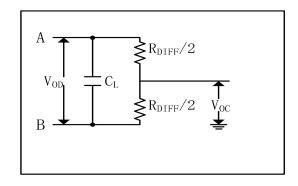


图 1.驱动器直流测试负载

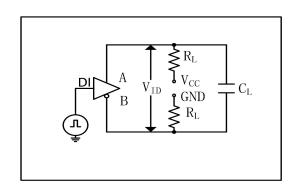


图 2.驱动器时间测试电路

测试电路及波形 (续)

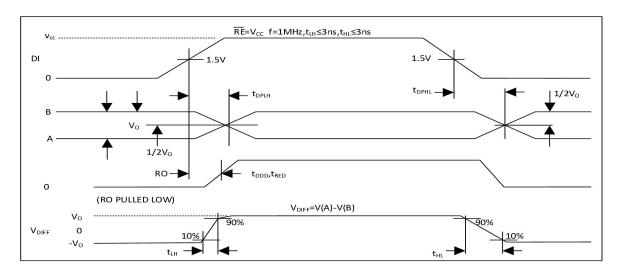


图 3.驱动器传播延迟

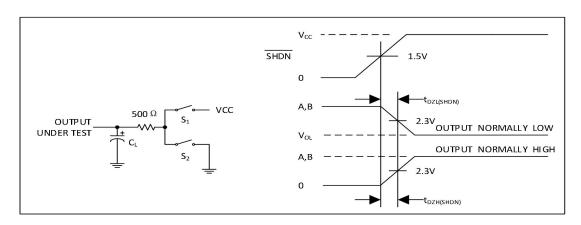


图 4.驱动器开启和关断时间

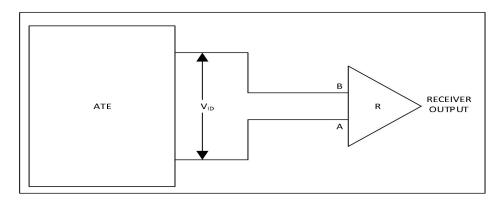


图 5.接收器传播延迟测试电路

测试电路及波形 (续)

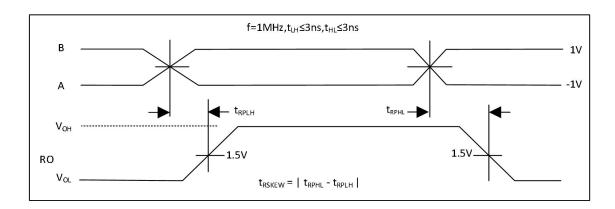


图 6.接收器传播延迟

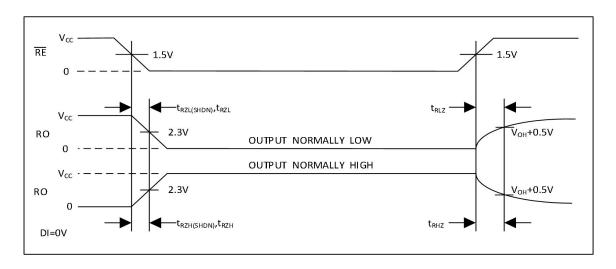


图 7.接收器开启和关断时间

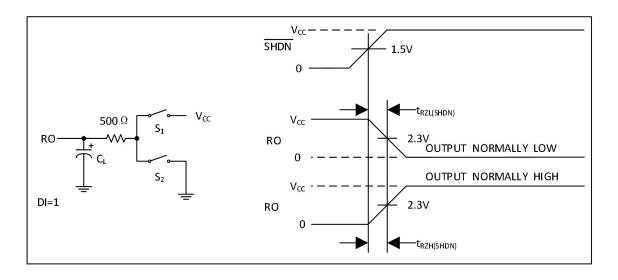


图 8.接收器从关断状态到使能状态时间

8 详细描述

TK13487E/TK13488E为半双工、高速RS-485/RS-422收发器,包括一路驱动器和一路接收器。同时TK13487E/TK13488E还具有热插拔功能,防止芯片在热插拔的情况下传输错误的数据(请参阅热插拔功能部分)。

TK13487E采用限制摆率驱动器,可降低EMI并减小由于不恰当的电缆端接引起的反射,能够实现最高500Kbps的无差错数据传输;TK13488E驱动器不限制摆率,能够实现最高16Mbps的传输速率。

8.1 自动收发控制

TK13487E/TK13488E 的内部电路配合外部A 端上拉电阻和 B 端下拉电阻(见典型应用电路),用于自动开启或关断驱动器和接收器,以保证总线处于正确状态。该自动收发控制电路由一个状态机和接收比较器组成,用于确定是该芯片来驱动总线,还是总线上面其他节点来驱动总线。

状态机有两个输入:

- DI
- A-B 的当前状态(由专用的差分比较器确定)

状态机有两个输出:

- DRIVER ENABLE—用于使能和禁用驱动器的内部信号
- RECEIVER_ENABLE—与 DRIVER_ENABLE 反相的内部信号,但可由外部引脚屏蔽掉
- DI 为低电平时,器件将总线驱动至低电平。

DI 为高电平时,器件在短时间内将总线驱动至高电平,随后关断驱动器,并由外部上拉/下拉电阻保持总线为高电平。每当 DI 从低电平跳变至高电平过程中,驱动器保持使能状态,直到(A-B) > V_{DT} 为止;随后关闭驱动器,由上拉/下拉电阻保持 A、B 总线处于正确状态。

8.2 上拉和下拉电阻

对于 A、B 总线的上拉电阻和下拉电阻的阻值要求不是非常严格,但这两个电阻须保证器件正常工作。在总线由低电平跳变至高电平后,由这两个电阻保证总线处于逻辑高电平状态。计算上拉、下拉电阻的方法和其它 RS-485 驱动器的方法一样,取决于总线的端接方式和总线上的节点数。计算上拉、下拉电阻的关键在于保证总线在空闲状态下的电压(A-B)大于 200mV,以符合标准的 RS-485 接收器阈值。

8.3 空闲状态

当不传输数据时,TK13487E/TK13488E 要求 DI 输入驱动至高电平,以保持其空闲状态。传统的 RS-485 收发器采用DE 和RE 输入,用于启用和禁用驱动器和接收器。但是,TK13487E/TK13488E 无需DE 输入,而是利用内部状态机来启用和禁用驱动器。空闲状态下,必须将DI 驱动至高电平。

8.4 热插拔功能

8.4.1 热插拔输入

把电路板插入带电或正在工作的背板时,数据总线的差分干扰可能导致数据错误。电路板插入背板时,数据通信处理器启动一次自身上电过程。在此过程中,处理器的逻辑输出驱动器为高阻态,不能将芯片的 DI 和 RE 输入驱动到需要的逻辑电平。处理器的驱动器在高阻态时可能会有高达±10μA 的漏电流,这会引起收发器的标准 CMOS 使能输入偏移到不正确的逻辑电平。此外,电路板寄生电容还会将 Vcc 或 GND 电平耦合到使能输入端。如果不具备热插拔功能,这些因素可能会导致芯片的驱动器不正确的启动。

为了克服这些问题,芯片会在上电时候打开两个不同的上拉开关(强和弱)。当 V_{cc} 上升的时候,内部上电信号开启强上拉电路,上拉电流 1mA 持续时间 $15\mu s$,使得 DI 和 RE 保持为高,超过 $15\mu s$ 之后,强上拉将关闭,弱上拉($100\mu A$)打开,以克服引脚上的泄漏电流。当微控制器驱动这些引脚处于低电平状态之后,第二次的弱上拉就会关闭。因此,在正常操作过程中(第一次触发热插拔之后),这些输入引脚就会变成没有任何上拉电阻的高阻抗输入引脚。

自动收发控制状态机初始化后,强制驱动器关闭。接收器在自动收发控制模式下启用。

8.4.2 热插拔输入电路

使能输入端具备热插拔功能,输入端有两个 PMOS 器件: M1和 M2(图 9)。当 V_{CC} 由零开始上升时,内部 15 μ s 定时器打开 M2,SR 锁存器置位,锁存器又同时打开 M1。晶体管 M2(1.5 μ A 电流源)和 M1(500 μ A 电

流源),通过一个 $5k\Omega$ 电阻将 RE 上拉至 V_{CC} 。为防止高达 100PF 的外部寄生电容将 RE 驱动至高电平,M2 旨在将 RE 拉至关闭状态。 $15\mu s$ 之后,定时器关闭 M2,M1 继续导通,以保持 DI 为高电平,以防止三态漏电流将 RE 驱动至低电平。直到外部驱动器能够提供所需的输入电流后才关闭 M1。此时,SR 锁存器复位,M1 关闭。M1 关闭时,RE 恢复到标准的高阻 CMOS 输入。只要 V_{CC} 降至 1V 以下,就会复位热插拔输入电路。DI 具有类似的热插拔功能。

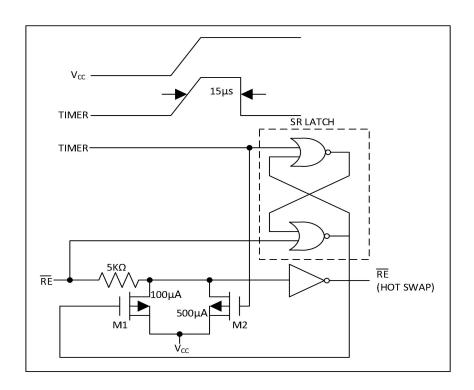


图 9.接收器使能引脚(RE)简化结构

9 产品应用

9.1 总线上挂接256 个收发器

标准 RS-485 接收器的输入阻抗为 12kΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。 TK13487E/TK13488E 收发器的接收器具有1/8 单位负载的输入阻抗(96kΩ),允许最多 256 个收发器并行挂接在同一通信总线上。这些器件可任意组合,或者与其它RS-485 收发器组合使用,只要总负载不超过32 个单位负载,即可挂接在同一总线上。

9.2 降低EMI 和反射

TK13487E 的低摆率驱动器可以减小 EMI,并降低由于不恰当的终端匹配电缆所引起的反射,实现最大 500kbps 的无差错数据传输。

9.3 低功耗关断模式

SHDN 置为低电平时,进入低功耗关断模式。关断模式下,芯片仅消耗最大值为 10uA 的电源电流。

如果 SHDN 为低电平的持续时间小于 50ns,可以确保器件不会进入关断模式。如果输入端维持这种状态 700ns 以上,则确保这些器件进入关断模式。

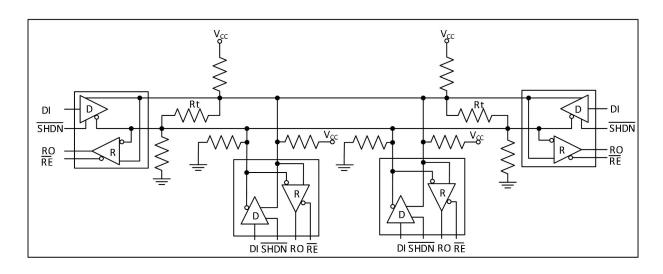
使能时间 t_{zH} 与 t_{zL} (详见电气特性部分)假定芯片并未处于低功耗关断状态,使能时间 $t_{zH(SHDN)}$ 与 $t_{zL(SHDN)}$ 假定芯片处于关断状态,驱动器和接收器从低功耗关断状态过渡到有效状态所需要的时间($t_{zH(SHDN)}$ 、 $t_{zL(SHDN)}$),要比从禁止状态过渡到有效状态所需要的时间(t_{zH} 、 t_{zL})长。

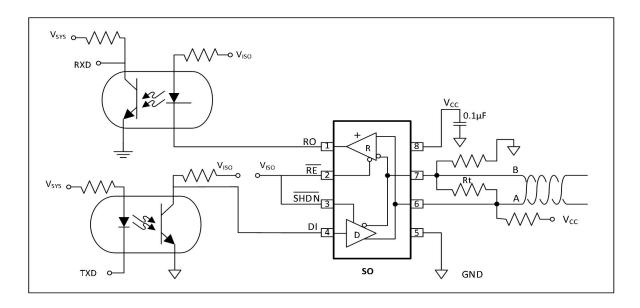
9.4 传输距离

RS-485/RS-422 标准规定最大 4000 英尺的传输距离。

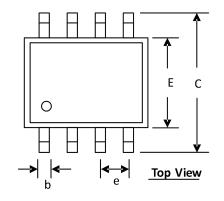
9.5 典型应用方案

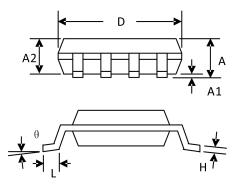
TK13487E/TK13488E 收发器设计用于多点总线传输线上的半双工、双向数据通信。图 10 给出了典型网络应用电路。为降低反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长度应尽可能短。具有摆率限制的TK13487E 能够允许不良终端匹配。




图 10.典型半双工 RS-485 网络

10 隔离型RS-485接口


隔离型 RS-485 接口可以对总线上的不同节点进行电气隔离,以保证总线免受由于超过 RS-485 共模电压范围带来的共模电压的问题,以及避免传导噪声和地回路造成的问题。下图典型应用电路是采用TK13487E/TK13488E 实现的隔离型RS-485 接口,收发器与控制电路采用不同的供电电源。TK13487E/TK13488E具有自动收发控制功能(请参阅自动收发控制电路部分),可节省外部继电器,允许更高的切换速率,无触点动,提供更高的可靠性和更好的电气隔离。TK13487E/TK13488E 只需两个光耦即可实现收发器的电气隔离。


11 引脚配置/典型应用电路

封装尺寸 SOP-8

符号	尺寸((MM)	尺寸 (英寸)		
和五	最小值	最大值	最小值	最大值	
Α	1.300	1.752	0.051	0.069	
A1	0.000	0.203	0.000	0.008	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	5.790	6.200	0.228	0.244	
D	4.700	5.110	0.185	0.201	
E	3.800	4.000	0.150	0.157	
е	1.270 BSC		0.050) BSC	
Н	0.170	0.254	0.007	0.010	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	