

High speed Low-Power CAN transceiver

Description

The TK1050 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus.

The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (M/bps).

The TK1050 is designed for operation in especially harsh environments. As a result, the device features cross-wire, overvoltage and loss of ground protection from –27V to 40V,

overtemperature shutdown, a –12V to 12V common-mode range, and will withstand voltage transients from –200V to 200V according to ISO7637.

Features

- Fully compatible with the ISO 11898 standard
- At least 110 nodes can be connected
- Improved Replacement for the TJA1050
- ±12 kV ESD Protection
- Bus-Fault Protection of -50V to 50V
- Thermally protected
- Transmit Data (TXD) dominant time-out function
- High speed (up to 1 MBaud)
- Silent mode in which the transmitter is disabled

Applications

- Industrial Automation
- High-Speed CAN Bus for Automotive Applications
- SAE J1939 Standard Data Bus Interface
- ISO 11783 Standard Data Bus Interface
- NMEA 2000 Standard Data Bus Interface

Ordering Information

Ordering Number	Package	Packing		
TK1050TR	SOP8	Reel		

PIN CONFIGURATION

PIN DESCRIPTION

Pin		1/0	Description		
No.	Name	1/0	Description		
1	TXD	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)		
2	GND	GND	Device ground		
3	Vcc	Supply	Transceiver 5-V supply		
4	RXD	0	CAN receive data output (LOW for dominant and HIGH for recessive bus states)		
5	SPLIT	0	Reference output voltage		
6	CANL	I/O	Low level CAN bus line		
7	CANH	I/O	High level CAN bus line		
8	STB	I	Mode select: Strong pull down to GND for high speed mode, strong pull up to VCC for low power mode		

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

Parameter	Description	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	7	V
	Voltage at any bus terminal (CANH, CANL, V _{ref})	-50	50	V
VI	Voltage input, transient pulse ⁽²⁾ (CANH, CANL)	-200	200	V
Vı	Voltage input range (TXD, S)	-0.5	6	V
TJ	Junction temperature	-55	170	°C
T _{stg}	Storage temperature	-40	125	°C

■ ELECTRICAL CHARACTERISTICS (V_{CC}=5V, T_A=-25°C ~ 125°C, unless otherwise specified)

Recommended Operating Condition

Parameter		Description		Min	Max	Unit	
V _{cc}	Supply voltage			4.5	5.5	V	
$V_I \text{ or } V_{IC}$	Voltage at any	bus terminal (separately c	or common mode)	-24	24	V	
VIH	High-level inpu	it voltage		2.0	Vcc	V	
V _{IL}	Low-level input	t voltage	- IXD, S	0	0.8	V	
V _{ID}	Differential inp	out voltage	-7	7	V		
I	High-level output current		Driver	-70		mA	
IOH			Receiver	-6			
		ut ourroat	Driver		70		
IOL	Low-level outp	Low-level output current			6	mA	
T,	Junction	See Absolute Maximum Ratings ⁽¹⁾ , 1-Mbps		-40	150	°C	
1]	temperature	minimum signaling rate	-+0	150			
	Signaling Rate					kbps	

Driver Electronical Characteristics

Parameter	Description		Test Co	nditions	Min	TYP ⁽¹⁾	Max	Unit
		CANUL		4.75V < V _{CC} < 5.25V	3.0	3.6	4.5	
	Bus output		$V_1 = 0V$, S at $0V$, $R_L = 0$	4.5V < V _{CC} < 5.5V	2.75		5.2	
V _O (D)	(Dominant)	CANI	and Figure 2	4.75V < V _{CC} < 5.25V	0.8	1.4	1.6	V
	(Dominant)	CANL		$4.5V < V_{CC} < 5.5V$			1.6	
			V_1 = 3V, S at 0V, R_L =	4.75V < V _{CC} < 5.25V	2	2.5	3	V
V _{O(R)}	Bus output voltage (Recessive)		60 Ω,See <u>Figure 1</u> and <u>Figure 2</u>	4.5V < V _{CC} < 5.5V	1.8	2.4	3	V
			$V_{I} = 0V, R_{L} = 60 \Omega,$	$4.75V < V_{CC} < 5.25V$	1.5	2.2	3	
			S at OV,See Figure 1					
				$4.5V < V_{CC} < 5.5V$	1.4		3	
	Differential output voltage		Figure <u>3</u>					v
• 00(0)	(Dominant)		$V_1 = 0V, R_L = 45 \Omega, S$	$4.75V < V_{CC} < 5.25V$	1.4		3	•
			at OV,See <u>Figure 1</u>					
			and <u>Figure</u> <u>2</u> ,and	4.5V < V _{CC} < 5.5V	1.3		3	
			Figure <u>3</u>					
V	Differential outpu	ut voltage	V ₁ = 3V, S at 0V,See	Figure <u>1</u> and <u>Figure 2</u>	-0.012		0.012	V
VOD(R)	(Recessive)		V _I = 3V, S at	0V, No Load	-0.5		0.05	v
V	Steady state com	mon-mode		4.75V < V _{CC} < 5.25V	2	2.5	3	V
V OC(SS)	output voltage		C at 0)/	4.5V < V _{CC} < 5.5V	1.9		3	V
A\/	Change in steady	-state	Satuv			20		
Δv _{OC(SS)}	common-mode output voltage					30		mv

■ ELECTRICAL CHARACTERISTICS (Cont.)

IIH	High-level input current, TXD input	V _I at V _{CC}	-2	0	2	
IIL	Low-level input current, TXD input	V _I at 0V	-50	-30	-10	μA
I _{O(off)}	Power-off TXD output current	V _{cc} at 0V, TXD at 5V			1	
		V _{CANH} = - 12V, CANL Open	-130	-100		
	Short-circuit steady-state	V _{CANH} = 12V, CANL Open			1	m 1
IOS(SS)	output current	V _{CANL} = - 12V, CANH Open	-1			IIIA
	-	V _{CANL} = 12V, CANH Open		77	105	
Co	Output capacitance	See receiver input capacitance				

Receiver Electronical Characteristics

Parameter	Description	Те	st Conditions	Min	TYP ⁽¹⁾	Max	Unit
V _{IT+}	Positive-going input threshold voltage		S at OV		800	900	
V _{IT} -	Negative-going input threshold voltage		Saluv	500	650		mV
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})			100	125		
		l _o = -2mA	4.75V < V _{CC} < 5.25V	4	4.6		
V _{он}	High-level output voltage	See Figure 6	4.5V < V _{CC} < 5.5V	3.8			V
V _{OL}	Low-level output voltage	I ₀ = 2mA,See <u>Figure</u> <u>6</u>			0.3	0.4	V
I _{I(off)}	Power-off bus input current	CANH or CANL = 5V, Other pin at 0V, Vcc at 0V, TXD at 0V			165	250	μA
I _{O(off)}	Power-off RXD leakage current	V _{CC} a	at OV, RXD at 5V			20	μA
Cı	Input capacitance to ground, (CANH or CANL)	TXD at 3 V, V ₁ = 0.4sin (4E6πt) + 2.5 V			13		pF
CID	Differential input capacitance	TXD at 3	V, V _I = 0.4sin (4E6πt)		5		
R _{ID}	Differential input resistance	TVI	$\lambda = \frac{1}{2} \sqrt{5} = \frac{1}{2} \sqrt{5}$	30	50	80	10
R _{IN}	Input resistance, (CANH or CANL)	TXD at 3V, S at UV		15	25	40	
R _{I(m)}	Input resistance matching [1 - R _{IN (CANH)} / R _{IN (CANL))}] x 100%	V	(CANH) = V(CANL)	-3%	0	3%	

Device Switching Characteristics

Parameter	Description	Test Conditions		Min	ТҮР	Max	Unit
T _{d(loop1)}	Total loop delay, driver input to receiver		4.75V < VCC < 5.25V	70	100	190	
	output, Recessive to Dominant	$c \rightarrow 0 V$	4.5V < VCC < 5.5V	75		115	
T _{d(LOOP2)}	Total loop delay, driver input to receiver	Saluv	4.75V < VCC < 5.25V	70	110	190	ns
	output, Dominant to Recessive		4.5V < VCC < 5.5V	75		155	

Driver Switching Characteristics

Parameter	Description	Te	est Conditions	Min	ТҮР	Max	Unit
t _{PLH}	Propagation delay time, low-to-high-level output	S at OV, See <u>Figure</u> <u>4</u>		25	55	110	
t _{PHL}	Propagation delay time, high-to-low-level output			25	50	90	
tr	Differential output signal rise time				25		
t _f	Differential output signal fall time				50		
t _{en}	Enable time from silent mode to dominant					10	μs
т., .			$4.75V < V_{CC} < 5.25V$	300	550	700	
l (dom)	Dominant time-out		$4.5V < V_{CC} < 5.5V$	280		700	μs

■ ELECTRICAL CHARACTERISTICS (Cont.)

Receiver Switching Characteristics

Parameter	Description	Te	est Conditions	Min	ТҮР	Max	Unit
T _{PLH}	Propagation delay time, low-to-high-level output		4.75V < V _{CC} < 5.25V	50	75	130	
		S at OV	$4.5V < V_{CC} < 5.5V$	55		135	
т	Propagation delay time, high-to-low-level output	or V _{cc}	4.75V < V _{CC} < 5.25V	25	50	90	
I PHL		See	4.5V < V _{CC} < 5.5V	30		95	115
t _r	Output signal rise time				8		
t _f	Output signal fall time				8		

Dissipation Ratings

Parameter	Description	Min	Тур	Max	Unit
T _{JS}	Junction Temperature, Thermal Shutdown		190		°C

Supply Current

Parameter	Descrip	otion	Test Conditions		Min	түр	Max	Unit
I _{CC}		Silent mode	S at V _{CC} , V _I =	= V _{CC}		2.5	5	
	5-V Supply current	Supply Dominant	$V_{\rm c} = 0V_{\rm c} 60_{\rm c} 0$ load S at $0V_{\rm c}$	$4.75V < V_{cc} < 5.25$		50	70	mA
			$v_1 = 0v, 00 \Omega Load, 3 at 0v$	4.5V < V _{CC} < 5.5V			75	
		Recessive	V _I = V _{CC} , No Load	d, S at OV		2.5	5	

Split-Pin Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{IH}	High level input current	S at 2V	20	35	50	
IIL	Low level input current	S at 0.8V	15	30	45	μΑ

VREF-Pin Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{REF}	Reference output voltage	–50 μA < Ι ₀ < 50 μA	0.4V _{CC}	0.5V _{CC}	0.6V _{CC}	V

ESD Ratings

			Value	Unit
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins	±8000	
V _(ESD)		Bus terminals vs GND	±12000	N
discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		±2000	v
uisendige	Machine model (MM) ANSI/ESDS5.2-1996		±400	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver Voltage, Current, and Test Definition

Figure 3. Driver VOD Test Circuit

Figure 4. Driver Test Circuit and Voltage Waveforms

Figure 5. Receiver Voltage and Current Definitions

■ PARAMETER MEASUREMENT INFORMATION (CONTINUED)

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, t_r \leq 6ns,t_f \leq 6ns, Z₀ = 50 Ω .

B. CL includes instrumentation and fixture capacitance within ±20%.

Figure 6. Receiver Test Circuit and Voltage Waveforms

Table 2. Driver Truth Table

INPUTS		OUTPUTS		BUIS STATE	
TXD ⁽¹⁾	S ⁽¹⁾	CANH ⁽¹⁾	CANL ⁽¹⁾	BUS STATE	
L	L or Open	н	L	DOMINANT	
Н	х	Z	Z	RECESSIVE	
Open	х	Z	Z	RECESSIVE	
х	Н	Z	Z	RECESSIVE	

(1) H = high level; L = low level; X = irrelevant; Z = high impedance

Table 3. Receiver Truth Table

DIFFERENTIAL INPUTS V _{ID} = V(CANH) - V(CANL)	OUTPUT RXD ⁽¹⁾	BUS STATE
V _{ID} ≥ 0.9 V	L	DOMINANT
0.5V < V _{ID} < 0.9V	?	?
V _{ID} ≤0.5V	Н	RECESSIVE
Open	Н	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance

APPLICATION AND IMPLEMENTATION

Application Information

The CAN bus has two states during powered operation of the device; dominant and recessive. A dominant bus state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD pin. A recessive bus state is when the bus is biased to $V_{CC}/2$ via the high-resistance internal resistors R_{IN} and R_{ID} of the receiver, corresponding to a logic high on the TXD and RXD pins. See Figure 7 and Figure 8.

Figure 8. Simplified Recessive Common Mode Bias and Receiver

CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the link layer portion of the CAN protocol. The different nodes on the network are typically connected through the use of a 120Ω characteristic impedance twisted-pair cable with termination on both ends of the bus.

TYPICAL APPLICATION

Figure 9. Typical Application Schematic

Design Requirements

Bus Loading, Length, and Number of Nodes

The ISO11898 Standard specifies up to 1Mbps data rate, maximum bus length of 40 meters, maximum drop line (stub) length of 0.3 meters and a maximum of 30 nodes. However, with careful network design, the system may have longer cables, longer stub lengths, and many more nodes to a bus. Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO11898 standard. They have made system level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are SAE J1939, CAN open, Device Net and NMEA2000.

A high number of nodes requires a transceiver with high input impedance and wide common mode range such as the TK1050 CAN transceiver. ISO11898-2 specifies the driver differential output with a 60- Ω load (two 120 Ω termination resistors in parallel) and the differential output must be greater than 1.5 V. The TK1050 device is specified to meet the 1.5-V requirement with a 60- Ω load, and additionally specified with a differential output voltage minimum of 1.2 V across a common mode range of -2 V to 7 V via a 330- Ω coupling network. This network represents the bus loading of 90 TK1050 transceivers based on their minimum differential input resistance of 30k Ω . Therefore, the TK1050 supports up to 90 transceivers on a single bus segment with margin to the 1.2-V minimum differential input voltage requirement at each node.

For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes may be lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 meters by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1-km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO11898 CAN standard.

CAN Termination

The ISO11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120Ω characteristic impedance (Z_0). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if nodes may be removed from the bus the termination must be carefully placed so that it is not removed from the bus.

Termination is typically a 120Ω resistor at each end of the bus. If filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used (see Figure 11). Split termination uses two 60Ω resistors with a capacitor in the middle of these resistors to ground. Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common mode voltages at the start and end of message transmissions.

Care should be taken when determining the power ratings of the termination resistors. A typical worst case fault condition is if the system power supply and ground were shorted across the termination resistance which would result in much higher current through the termination resistance than the current limit of the CAN transceiver.

Figure 11. CAN Termination

Loop Propagation Delay

Transceiver loop delay is a measure of the overall device propagation delay, consisting of the delay from the driver input (TXD pin) to the differential outputs (CANH and CANL pins), plus the delay from the receiver inputs (CANH and CANL) to its output (RXD pin).

PACKAGE OUTLINE SOIC - 8,1.75 mm max height

NOTES: Linear dimensions are in inches [millimeters]. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.